math.answers.com/math-and-arithmetic/How_many_distinguishable_ways_can_you_arrange_the_letters_aaabb

Preview meta tags from the math.answers.com website.

Linked Hostnames

8

Thumbnail

Search Engine Appearance

Google

https://math.answers.com/math-and-arithmetic/How_many_distinguishable_ways_can_you_arrange_the_letters_aaabb

How many distinguishable ways can you arrange the letters aaabb? - Answers

To find the number of distinguishable arrangements of the letters "aaabb," we use the formula for permutations of multiset: [ \frac{n!}{n_1! \times n_2!} ] where ( n ) is the total number of letters, ( n_1 ) is the number of indistinguishable letters of one type, and ( n_2 ) is the number of indistinguishable letters of another type. Here, ( n = 5 ) (total letters), ( n_1 = 3 ) (for 'a'), and ( n_2 = 2 ) (for 'b'). Calculating this gives: [ \frac{5!}{3! \times 2!} = \frac{120}{6 \times 2} = \frac{120}{12} = 10 ] Thus, there are 10 distinguishable ways to arrange the letters "aaabb."



Bing

How many distinguishable ways can you arrange the letters aaabb? - Answers

https://math.answers.com/math-and-arithmetic/How_many_distinguishable_ways_can_you_arrange_the_letters_aaabb

To find the number of distinguishable arrangements of the letters "aaabb," we use the formula for permutations of multiset: [ \frac{n!}{n_1! \times n_2!} ] where ( n ) is the total number of letters, ( n_1 ) is the number of indistinguishable letters of one type, and ( n_2 ) is the number of indistinguishable letters of another type. Here, ( n = 5 ) (total letters), ( n_1 = 3 ) (for 'a'), and ( n_2 = 2 ) (for 'b'). Calculating this gives: [ \frac{5!}{3! \times 2!} = \frac{120}{6 \times 2} = \frac{120}{12} = 10 ] Thus, there are 10 distinguishable ways to arrange the letters "aaabb."



DuckDuckGo

https://math.answers.com/math-and-arithmetic/How_many_distinguishable_ways_can_you_arrange_the_letters_aaabb

How many distinguishable ways can you arrange the letters aaabb? - Answers

To find the number of distinguishable arrangements of the letters "aaabb," we use the formula for permutations of multiset: [ \frac{n!}{n_1! \times n_2!} ] where ( n ) is the total number of letters, ( n_1 ) is the number of indistinguishable letters of one type, and ( n_2 ) is the number of indistinguishable letters of another type. Here, ( n = 5 ) (total letters), ( n_1 = 3 ) (for 'a'), and ( n_2 = 2 ) (for 'b'). Calculating this gives: [ \frac{5!}{3! \times 2!} = \frac{120}{6 \times 2} = \frac{120}{12} = 10 ] Thus, there are 10 distinguishable ways to arrange the letters "aaabb."

  • General Meta Tags

    22
    • title
      How many distinguishable ways can you arrange the letters aaabb? - Answers
    • charset
      utf-8
    • Content-Type
      text/html; charset=utf-8
    • viewport
      minimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
    • X-UA-Compatible
      IE=edge,chrome=1
  • Open Graph Meta Tags

    7
    • og:image
      https://st.answers.com/html_test_assets/Answers_Blue.jpeg
    • og:image:width
      900
    • og:image:height
      900
    • og:site_name
      Answers
    • og:description
      To find the number of distinguishable arrangements of the letters "aaabb," we use the formula for permutations of multiset: [ \frac{n!}{n_1! \times n_2!} ] where ( n ) is the total number of letters, ( n_1 ) is the number of indistinguishable letters of one type, and ( n_2 ) is the number of indistinguishable letters of another type. Here, ( n = 5 ) (total letters), ( n_1 = 3 ) (for 'a'), and ( n_2 = 2 ) (for 'b'). Calculating this gives: [ \frac{5!}{3! \times 2!} = \frac{120}{6 \times 2} = \frac{120}{12} = 10 ] Thus, there are 10 distinguishable ways to arrange the letters "aaabb."
  • Twitter Meta Tags

    1
    • twitter:card
      summary_large_image
  • Link Tags

    16
    • alternate
      https://www.answers.com/feed.rss
    • apple-touch-icon
      /icons/180x180.png
    • canonical
      https://math.answers.com/math-and-arithmetic/How_many_distinguishable_ways_can_you_arrange_the_letters_aaabb
    • icon
      /favicon.svg
    • icon
      /icons/16x16.png

Links

58