math.answers.com/math-and-arithmetic/How_many_ways_can_you_choose_3_posters_from_24_posters
Preview meta tags from the math.answers.com website.
Linked Hostnames
8- 34 links tomath.answers.com
- 18 links towww.answers.com
- 1 link totwitter.com
- 1 link towww.facebook.com
- 1 link towww.instagram.com
- 1 link towww.pinterest.com
- 1 link towww.tiktok.com
- 1 link towww.youtube.com
Thumbnail

Search Engine Appearance
How many ways can you choose 3 posters from 24 posters? - Answers
To find the number of ways to choose 3 posters from 24, you can use the combination formula, which is given by ( C(n, r) = \frac{n!}{r!(n - r)!} ). Here, ( n = 24 ) and ( r = 3 ). Plugging in the values, we get ( C(24, 3) = \frac{24!}{3!(24 - 3)!} = \frac{24 \times 23 \times 22}{3 \times 2 \times 1} = 2024 ). Thus, there are 2024 ways to choose 3 posters from 24.
Bing
How many ways can you choose 3 posters from 24 posters? - Answers
To find the number of ways to choose 3 posters from 24, you can use the combination formula, which is given by ( C(n, r) = \frac{n!}{r!(n - r)!} ). Here, ( n = 24 ) and ( r = 3 ). Plugging in the values, we get ( C(24, 3) = \frac{24!}{3!(24 - 3)!} = \frac{24 \times 23 \times 22}{3 \times 2 \times 1} = 2024 ). Thus, there are 2024 ways to choose 3 posters from 24.
DuckDuckGo
How many ways can you choose 3 posters from 24 posters? - Answers
To find the number of ways to choose 3 posters from 24, you can use the combination formula, which is given by ( C(n, r) = \frac{n!}{r!(n - r)!} ). Here, ( n = 24 ) and ( r = 3 ). Plugging in the values, we get ( C(24, 3) = \frac{24!}{3!(24 - 3)!} = \frac{24 \times 23 \times 22}{3 \times 2 \times 1} = 2024 ). Thus, there are 2024 ways to choose 3 posters from 24.
General Meta Tags
22- titleHow many ways can you choose 3 posters from 24 posters? - Answers
- charsetutf-8
- Content-Typetext/html; charset=utf-8
- viewportminimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
- X-UA-CompatibleIE=edge,chrome=1
Open Graph Meta Tags
7- og:imagehttps://st.answers.com/html_test_assets/Answers_Blue.jpeg
- og:image:width900
- og:image:height900
- og:site_nameAnswers
- og:descriptionTo find the number of ways to choose 3 posters from 24, you can use the combination formula, which is given by ( C(n, r) = \frac{n!}{r!(n - r)!} ). Here, ( n = 24 ) and ( r = 3 ). Plugging in the values, we get ( C(24, 3) = \frac{24!}{3!(24 - 3)!} = \frac{24 \times 23 \times 22}{3 \times 2 \times 1} = 2024 ). Thus, there are 2024 ways to choose 3 posters from 24.
Twitter Meta Tags
1- twitter:cardsummary_large_image
Link Tags
16- alternatehttps://www.answers.com/feed.rss
- apple-touch-icon/icons/180x180.png
- canonicalhttps://math.answers.com/math-and-arithmetic/How_many_ways_can_you_choose_3_posters_from_24_posters
- icon/favicon.svg
- icon/icons/16x16.png
Links
58- https://math.answers.com
- https://math.answers.com/math-and-arithmetic/Are_numbers_13-19-29-32_composite_numbers
- https://math.answers.com/math-and-arithmetic/How_do_you_convert_7dm_to_meters
- https://math.answers.com/math-and-arithmetic/How_do_you_write_0.51_as_a_fraction
- https://math.answers.com/math-and-arithmetic/How_many_hours_are_in_a_number_of_days