math.answers.com/other-math/Can_you_predict_the_maximum_or_minimum_point_on_a_parabola
Preview meta tags from the math.answers.com website.
Linked Hostnames
8- 34 links tomath.answers.com
- 19 links towww.answers.com
- 1 link totwitter.com
- 1 link towww.facebook.com
- 1 link towww.instagram.com
- 1 link towww.pinterest.com
- 1 link towww.tiktok.com
- 1 link towww.youtube.com
Thumbnail

Search Engine Appearance
Can you predict the maximum or minimum point on a parabola? - Answers
A parabola is (mathematically speaking) a quadratic function, which looks like this y = ax2 + bx + c where a, b and c are constants. (If three points on the curve are known, then a, b and c can be found.) The gradient, then, can be found by differentiation: dy/dx = 2ax + b A parabola has one maximal or minimal point, where the gradient is zero. 2ax + b = 0 x = -b/2a Use the original function to find the corresponding value of y: y = a(-b/2a)2 + b(-b/2a) + c = b2/4a - b2/2a + c = c - b2/4a So the coordinates of your turning point are ( -b/2a , c - b2/4a ) This result can also be derived by completing the square.
Bing
Can you predict the maximum or minimum point on a parabola? - Answers
A parabola is (mathematically speaking) a quadratic function, which looks like this y = ax2 + bx + c where a, b and c are constants. (If three points on the curve are known, then a, b and c can be found.) The gradient, then, can be found by differentiation: dy/dx = 2ax + b A parabola has one maximal or minimal point, where the gradient is zero. 2ax + b = 0 x = -b/2a Use the original function to find the corresponding value of y: y = a(-b/2a)2 + b(-b/2a) + c = b2/4a - b2/2a + c = c - b2/4a So the coordinates of your turning point are ( -b/2a , c - b2/4a ) This result can also be derived by completing the square.
DuckDuckGo
Can you predict the maximum or minimum point on a parabola? - Answers
A parabola is (mathematically speaking) a quadratic function, which looks like this y = ax2 + bx + c where a, b and c are constants. (If three points on the curve are known, then a, b and c can be found.) The gradient, then, can be found by differentiation: dy/dx = 2ax + b A parabola has one maximal or minimal point, where the gradient is zero. 2ax + b = 0 x = -b/2a Use the original function to find the corresponding value of y: y = a(-b/2a)2 + b(-b/2a) + c = b2/4a - b2/2a + c = c - b2/4a So the coordinates of your turning point are ( -b/2a , c - b2/4a ) This result can also be derived by completing the square.
General Meta Tags
22- titleCan you predict the maximum or minimum point on a parabola? - Answers
- charsetutf-8
- Content-Typetext/html; charset=utf-8
- viewportminimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
- X-UA-CompatibleIE=edge,chrome=1
Open Graph Meta Tags
7- og:imagehttps://st.answers.com/html_test_assets/Answers_Blue.jpeg
- og:image:width900
- og:image:height900
- og:site_nameAnswers
- og:descriptionA parabola is (mathematically speaking) a quadratic function, which looks like this y = ax2 + bx + c where a, b and c are constants. (If three points on the curve are known, then a, b and c can be found.) The gradient, then, can be found by differentiation: dy/dx = 2ax + b A parabola has one maximal or minimal point, where the gradient is zero. 2ax + b = 0 x = -b/2a Use the original function to find the corresponding value of y: y = a(-b/2a)2 + b(-b/2a) + c = b2/4a - b2/2a + c = c - b2/4a So the coordinates of your turning point are ( -b/2a , c - b2/4a ) This result can also be derived by completing the square.
Twitter Meta Tags
1- twitter:cardsummary_large_image
Link Tags
16- alternatehttps://www.answers.com/feed.rss
- apple-touch-icon/icons/180x180.png
- canonicalhttps://math.answers.com/other-math/Can_you_predict_the_maximum_or_minimum_point_on_a_parabola
- icon/favicon.svg
- icon/icons/16x16.png
Links
59- https://math.answers.com
- https://math.answers.com/other-math/8_years_is_what_fraction_of_a_decade
- https://math.answers.com/other-math/A_plane_figure_formed_by_coplanar_segments_such_that_each_segment_intersects_exactly_two_other_segments_and_no_two_segments_with_a_common_endpoint_are_collinear
- https://math.answers.com/other-math/Can_you_predict_the_maximum_or_minimum_point_on_a_parabola
- https://math.answers.com/other-math/Express_65_percent_as_a_vulgar_fraction_in_its_lowest_term