math.answers.com/other-math/Do_matrices_form_an_abelian_group_under_multiplication
Preview meta tags from the math.answers.com website.
Linked Hostnames
8- 32 links tomath.answers.com
- 20 links towww.answers.com
- 1 link totwitter.com
- 1 link towww.facebook.com
- 1 link towww.instagram.com
- 1 link towww.pinterest.com
- 1 link towww.tiktok.com
- 1 link towww.youtube.com
Thumbnail

Search Engine Appearance
Do matrices form an abelian group under multiplication? - Answers
More precisely, I think you're asking whether the set of n X n matrices forms an abelian group under multiplication. The answer is no (assuming n>1). For example(1 0)(0 1) = (0 1)(0 0)(0 0) (0 0),but(0 1)(1 0) = (0 0)(0 0)(0 0) (0 0). However, the set of n x n diagonalmatrices does form an Abelian set. This is true regardless of the direction of the diagonality, right-to-left or left-to-right. Note that the resulting matrix will also be diagonal, but always right-to-left.
Bing
Do matrices form an abelian group under multiplication? - Answers
More precisely, I think you're asking whether the set of n X n matrices forms an abelian group under multiplication. The answer is no (assuming n>1). For example(1 0)(0 1) = (0 1)(0 0)(0 0) (0 0),but(0 1)(1 0) = (0 0)(0 0)(0 0) (0 0). However, the set of n x n diagonalmatrices does form an Abelian set. This is true regardless of the direction of the diagonality, right-to-left or left-to-right. Note that the resulting matrix will also be diagonal, but always right-to-left.
DuckDuckGo
Do matrices form an abelian group under multiplication? - Answers
More precisely, I think you're asking whether the set of n X n matrices forms an abelian group under multiplication. The answer is no (assuming n>1). For example(1 0)(0 1) = (0 1)(0 0)(0 0) (0 0),but(0 1)(1 0) = (0 0)(0 0)(0 0) (0 0). However, the set of n x n diagonalmatrices does form an Abelian set. This is true regardless of the direction of the diagonality, right-to-left or left-to-right. Note that the resulting matrix will also be diagonal, but always right-to-left.
General Meta Tags
22- titleDo matrices form an abelian group under multiplication? - Answers
- charsetutf-8
- Content-Typetext/html; charset=utf-8
- viewportminimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
- X-UA-CompatibleIE=edge,chrome=1
Open Graph Meta Tags
7- og:imagehttps://st.answers.com/html_test_assets/Answers_Blue.jpeg
- og:image:width900
- og:image:height900
- og:site_nameAnswers
- og:descriptionMore precisely, I think you're asking whether the set of n X n matrices forms an abelian group under multiplication. The answer is no (assuming n>1). For example(1 0)(0 1) = (0 1)(0 0)(0 0) (0 0),but(0 1)(1 0) = (0 0)(0 0)(0 0) (0 0). However, the set of n x n diagonalmatrices does form an Abelian set. This is true regardless of the direction of the diagonality, right-to-left or left-to-right. Note that the resulting matrix will also be diagonal, but always right-to-left.
Twitter Meta Tags
1- twitter:cardsummary_large_image
Link Tags
16- alternatehttps://www.answers.com/feed.rss
- apple-touch-icon/icons/180x180.png
- canonicalhttps://math.answers.com/other-math/Do_matrices_form_an_abelian_group_under_multiplication
- icon/favicon.svg
- icon/icons/16x16.png
Links
58- https://math.answers.com
- https://math.answers.com/other-math/8_more_than_3_times_a_number_equals
- https://math.answers.com/other-math/A_cube_with_2_inch_sides_is_placed_on_a_cube_with_3_inch_sides_then_a_cube_with_1_inch_sides_is_placed_on_the_2_inch_cube_what_is_the_surface_area_of_the_three_inch_cube
- https://math.answers.com/other-math/Do_matrices_form_an_abelian_group_under_multiplication
- https://math.answers.com/other-math/How_do_you_graph_linear_functions