math.answers.com/other-math/Find_root_ninety_eight_using_Taylor's_series

Preview meta tags from the math.answers.com website.

Linked Hostnames

8

Thumbnail

Search Engine Appearance

Google

https://math.answers.com/other-math/Find_root_ninety_eight_using_Taylor's_series

Find root ninety eight using Taylor's series? - Answers

The first-order Taylor expansion around x2 is given by sqrt(x2 + a) ~ x + a / 2xSo for sqrt(98), we know the closes perfect square is 81 = 9^2. Therefore: sqrt(98) = sqrt(81 + 17) = sqrt(9^2 + 17) ~ 9 + 17/(2*9) = 9 + 17/18 ~ 9.9444Alternatively, sqrt(98) = sqrt(100 - 2) = sqrt(10^2 - 2) ~ 10 - 2/(2*10) = 10 - 1/10 = 9.9Using a calculator: sqrt(98) ~ 9.899Taylor series will always be an over-approximation.



Bing

Find root ninety eight using Taylor's series? - Answers

https://math.answers.com/other-math/Find_root_ninety_eight_using_Taylor's_series

The first-order Taylor expansion around x2 is given by sqrt(x2 + a) ~ x + a / 2xSo for sqrt(98), we know the closes perfect square is 81 = 9^2. Therefore: sqrt(98) = sqrt(81 + 17) = sqrt(9^2 + 17) ~ 9 + 17/(2*9) = 9 + 17/18 ~ 9.9444Alternatively, sqrt(98) = sqrt(100 - 2) = sqrt(10^2 - 2) ~ 10 - 2/(2*10) = 10 - 1/10 = 9.9Using a calculator: sqrt(98) ~ 9.899Taylor series will always be an over-approximation.



DuckDuckGo

https://math.answers.com/other-math/Find_root_ninety_eight_using_Taylor's_series

Find root ninety eight using Taylor's series? - Answers

The first-order Taylor expansion around x2 is given by sqrt(x2 + a) ~ x + a / 2xSo for sqrt(98), we know the closes perfect square is 81 = 9^2. Therefore: sqrt(98) = sqrt(81 + 17) = sqrt(9^2 + 17) ~ 9 + 17/(2*9) = 9 + 17/18 ~ 9.9444Alternatively, sqrt(98) = sqrt(100 - 2) = sqrt(10^2 - 2) ~ 10 - 2/(2*10) = 10 - 1/10 = 9.9Using a calculator: sqrt(98) ~ 9.899Taylor series will always be an over-approximation.

  • General Meta Tags

    22
    • title
      Find root ninety eight using Taylor's series? - Answers
    • charset
      utf-8
    • Content-Type
      text/html; charset=utf-8
    • viewport
      minimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
    • X-UA-Compatible
      IE=edge,chrome=1
  • Open Graph Meta Tags

    7
    • og:image
      https://st.answers.com/html_test_assets/Answers_Blue.jpeg
    • og:image:width
      900
    • og:image:height
      900
    • og:site_name
      Answers
    • og:description
      The first-order Taylor expansion around x2 is given by sqrt(x2 + a) ~ x + a / 2xSo for sqrt(98), we know the closes perfect square is 81 = 9^2. Therefore: sqrt(98) = sqrt(81 + 17) = sqrt(9^2 + 17) ~ 9 + 17/(2*9) = 9 + 17/18 ~ 9.9444Alternatively, sqrt(98) = sqrt(100 - 2) = sqrt(10^2 - 2) ~ 10 - 2/(2*10) = 10 - 1/10 = 9.9Using a calculator: sqrt(98) ~ 9.899Taylor series will always be an over-approximation.
  • Twitter Meta Tags

    1
    • twitter:card
      summary_large_image
  • Link Tags

    16
    • alternate
      https://www.answers.com/feed.rss
    • apple-touch-icon
      /icons/180x180.png
    • canonical
      https://math.answers.com/other-math/Find_root_ninety_eight_using_Taylor%27s_series
    • icon
      /favicon.svg
    • icon
      /icons/16x16.png

Links

58