math.answers.com/other-math/Find_root_ninety_eight_using_Taylor's_series
Preview meta tags from the math.answers.com website.
Linked Hostnames
8- 34 links tomath.answers.com
- 18 links towww.answers.com
- 1 link totwitter.com
- 1 link towww.facebook.com
- 1 link towww.instagram.com
- 1 link towww.pinterest.com
- 1 link towww.tiktok.com
- 1 link towww.youtube.com
Thumbnail

Search Engine Appearance
Find root ninety eight using Taylor's series? - Answers
The first-order Taylor expansion around x2 is given by sqrt(x2 + a) ~ x + a / 2xSo for sqrt(98), we know the closes perfect square is 81 = 9^2. Therefore: sqrt(98) = sqrt(81 + 17) = sqrt(9^2 + 17) ~ 9 + 17/(2*9) = 9 + 17/18 ~ 9.9444Alternatively, sqrt(98) = sqrt(100 - 2) = sqrt(10^2 - 2) ~ 10 - 2/(2*10) = 10 - 1/10 = 9.9Using a calculator: sqrt(98) ~ 9.899Taylor series will always be an over-approximation.
Bing
Find root ninety eight using Taylor's series? - Answers
The first-order Taylor expansion around x2 is given by sqrt(x2 + a) ~ x + a / 2xSo for sqrt(98), we know the closes perfect square is 81 = 9^2. Therefore: sqrt(98) = sqrt(81 + 17) = sqrt(9^2 + 17) ~ 9 + 17/(2*9) = 9 + 17/18 ~ 9.9444Alternatively, sqrt(98) = sqrt(100 - 2) = sqrt(10^2 - 2) ~ 10 - 2/(2*10) = 10 - 1/10 = 9.9Using a calculator: sqrt(98) ~ 9.899Taylor series will always be an over-approximation.
DuckDuckGo
Find root ninety eight using Taylor's series? - Answers
The first-order Taylor expansion around x2 is given by sqrt(x2 + a) ~ x + a / 2xSo for sqrt(98), we know the closes perfect square is 81 = 9^2. Therefore: sqrt(98) = sqrt(81 + 17) = sqrt(9^2 + 17) ~ 9 + 17/(2*9) = 9 + 17/18 ~ 9.9444Alternatively, sqrt(98) = sqrt(100 - 2) = sqrt(10^2 - 2) ~ 10 - 2/(2*10) = 10 - 1/10 = 9.9Using a calculator: sqrt(98) ~ 9.899Taylor series will always be an over-approximation.
General Meta Tags
22- titleFind root ninety eight using Taylor's series? - Answers
- charsetutf-8
- Content-Typetext/html; charset=utf-8
- viewportminimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
- X-UA-CompatibleIE=edge,chrome=1
Open Graph Meta Tags
7- og:imagehttps://st.answers.com/html_test_assets/Answers_Blue.jpeg
- og:image:width900
- og:image:height900
- og:site_nameAnswers
- og:descriptionThe first-order Taylor expansion around x2 is given by sqrt(x2 + a) ~ x + a / 2xSo for sqrt(98), we know the closes perfect square is 81 = 9^2. Therefore: sqrt(98) = sqrt(81 + 17) = sqrt(9^2 + 17) ~ 9 + 17/(2*9) = 9 + 17/18 ~ 9.9444Alternatively, sqrt(98) = sqrt(100 - 2) = sqrt(10^2 - 2) ~ 10 - 2/(2*10) = 10 - 1/10 = 9.9Using a calculator: sqrt(98) ~ 9.899Taylor series will always be an over-approximation.
Twitter Meta Tags
1- twitter:cardsummary_large_image
Link Tags
16- alternatehttps://www.answers.com/feed.rss
- apple-touch-icon/icons/180x180.png
- canonicalhttps://math.answers.com/other-math/Find_root_ninety_eight_using_Taylor%27s_series
- icon/favicon.svg
- icon/icons/16x16.png
Links
58- https://math.answers.com
- https://math.answers.com/other-math/Can_you_find_the_number_that_comes_next_in_this_series_3_4_6_8_9_12_15_16
- https://math.answers.com/other-math/Find_root_ninety_eight_using_Taylor%27s_series
- https://math.answers.com/other-math/Formula_for_volume_of_a_right_circular_cylinder
- https://math.answers.com/other-math/Gerald_and_Michelle_went_on_a_24_mile_bike_ride_by_lunch_time_they_had_riden_five_eighths_of_the_total_distance_how_many_miles_did_they_have_left_to_ride