math.answers.com/other-math/Find_the_cube_root_of_unity
Preview meta tags from the math.answers.com website.
Linked Hostnames
8- 35 links tomath.answers.com
- 17 links towww.answers.com
- 1 link totwitter.com
- 1 link towww.facebook.com
- 1 link towww.instagram.com
- 1 link towww.pinterest.com
- 1 link towww.tiktok.com
- 1 link towww.youtube.com
Thumbnail

Search Engine Appearance
Find the cube root of unity? - Answers
The number 1 is its own square root, cube root, etc. in the real number system. To find complex roots of unity, we use the unit circle from trigonometry, coupled with the complex plane, where the x-axis is the real axis, and the y-axis is the imaginary axis. In that coordinate system, the number 1 corresponds to the point (1, 0) and the complex number 1 + 0i. Every complex number a + bi corresponds to the point (a, b) in the complex plane. To find roots of 1, we divide the unit circle up into as many sectors as the number of roots we are trying to find. For cube roots, that's 3 of course, so we divide the unit circle up into 3 sectors of 120 degrees (or 2pi/3 radians) each. So the three cube roots we want are located at the points 120 degrees around the unit circle from (1, 0). Since points on the unit circle have coordinates (cos(theta), sin(theta)), the first one we come to will be (cos(120), sin(120)) = (-1/2, Sqrt(3)/2). This point corresponds to the complex number -1/2 + (sqrt(3)/2)*i. The next point on the circle, 120 degrees from the last one, is (cos(240), sin(240)) = (-1/2, - sqrt(3)/2) = -1/2 - (sqrt(3)/2)*i. Now you have the three cube roots of unity: 1, -1/2 + (sqrt(3)/2)*i, and -1/2 - (sqrt(3)/2)*i. There's much more to all this, involving something called DeMoivre's Formula or Theorem.
Bing
Find the cube root of unity? - Answers
The number 1 is its own square root, cube root, etc. in the real number system. To find complex roots of unity, we use the unit circle from trigonometry, coupled with the complex plane, where the x-axis is the real axis, and the y-axis is the imaginary axis. In that coordinate system, the number 1 corresponds to the point (1, 0) and the complex number 1 + 0i. Every complex number a + bi corresponds to the point (a, b) in the complex plane. To find roots of 1, we divide the unit circle up into as many sectors as the number of roots we are trying to find. For cube roots, that's 3 of course, so we divide the unit circle up into 3 sectors of 120 degrees (or 2pi/3 radians) each. So the three cube roots we want are located at the points 120 degrees around the unit circle from (1, 0). Since points on the unit circle have coordinates (cos(theta), sin(theta)), the first one we come to will be (cos(120), sin(120)) = (-1/2, Sqrt(3)/2). This point corresponds to the complex number -1/2 + (sqrt(3)/2)*i. The next point on the circle, 120 degrees from the last one, is (cos(240), sin(240)) = (-1/2, - sqrt(3)/2) = -1/2 - (sqrt(3)/2)*i. Now you have the three cube roots of unity: 1, -1/2 + (sqrt(3)/2)*i, and -1/2 - (sqrt(3)/2)*i. There's much more to all this, involving something called DeMoivre's Formula or Theorem.
DuckDuckGo
Find the cube root of unity? - Answers
The number 1 is its own square root, cube root, etc. in the real number system. To find complex roots of unity, we use the unit circle from trigonometry, coupled with the complex plane, where the x-axis is the real axis, and the y-axis is the imaginary axis. In that coordinate system, the number 1 corresponds to the point (1, 0) and the complex number 1 + 0i. Every complex number a + bi corresponds to the point (a, b) in the complex plane. To find roots of 1, we divide the unit circle up into as many sectors as the number of roots we are trying to find. For cube roots, that's 3 of course, so we divide the unit circle up into 3 sectors of 120 degrees (or 2pi/3 radians) each. So the three cube roots we want are located at the points 120 degrees around the unit circle from (1, 0). Since points on the unit circle have coordinates (cos(theta), sin(theta)), the first one we come to will be (cos(120), sin(120)) = (-1/2, Sqrt(3)/2). This point corresponds to the complex number -1/2 + (sqrt(3)/2)*i. The next point on the circle, 120 degrees from the last one, is (cos(240), sin(240)) = (-1/2, - sqrt(3)/2) = -1/2 - (sqrt(3)/2)*i. Now you have the three cube roots of unity: 1, -1/2 + (sqrt(3)/2)*i, and -1/2 - (sqrt(3)/2)*i. There's much more to all this, involving something called DeMoivre's Formula or Theorem.
General Meta Tags
22- titleFind the cube root of unity? - Answers
- charsetutf-8
- Content-Typetext/html; charset=utf-8
- viewportminimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
- X-UA-CompatibleIE=edge,chrome=1
Open Graph Meta Tags
7- og:imagehttps://st.answers.com/html_test_assets/Answers_Blue.jpeg
- og:image:width900
- og:image:height900
- og:site_nameAnswers
- og:descriptionThe number 1 is its own square root, cube root, etc. in the real number system. To find complex roots of unity, we use the unit circle from trigonometry, coupled with the complex plane, where the x-axis is the real axis, and the y-axis is the imaginary axis. In that coordinate system, the number 1 corresponds to the point (1, 0) and the complex number 1 + 0i. Every complex number a + bi corresponds to the point (a, b) in the complex plane. To find roots of 1, we divide the unit circle up into as many sectors as the number of roots we are trying to find. For cube roots, that's 3 of course, so we divide the unit circle up into 3 sectors of 120 degrees (or 2pi/3 radians) each. So the three cube roots we want are located at the points 120 degrees around the unit circle from (1, 0). Since points on the unit circle have coordinates (cos(theta), sin(theta)), the first one we come to will be (cos(120), sin(120)) = (-1/2, Sqrt(3)/2). This point corresponds to the complex number -1/2 + (sqrt(3)/2)*i. The next point on the circle, 120 degrees from the last one, is (cos(240), sin(240)) = (-1/2, - sqrt(3)/2) = -1/2 - (sqrt(3)/2)*i. Now you have the three cube roots of unity: 1, -1/2 + (sqrt(3)/2)*i, and -1/2 - (sqrt(3)/2)*i. There's much more to all this, involving something called DeMoivre's Formula or Theorem.
Twitter Meta Tags
1- twitter:cardsummary_large_image
Link Tags
16- alternatehttps://www.answers.com/feed.rss
- apple-touch-icon/icons/180x180.png
- canonicalhttps://math.answers.com/other-math/Find_the_cube_root_of_unity
- icon/favicon.svg
- icon/icons/16x16.png
Links
58- https://math.answers.com
- https://math.answers.com/other-math/Find_the_cube_root_of_unity
- https://math.answers.com/other-math/Find_the_next_number_in_the_series_1248163264
- https://math.answers.com/other-math/How_big_is_56_mm_in_inches
- https://math.answers.com/other-math/How_do_you_put_exponents_on_a_calculator