math.answers.com/other-math/How_can_transformations_alter_the_graph_of_a_parent_function

Preview meta tags from the math.answers.com website.

Linked Hostnames

8

Thumbnail

Search Engine Appearance

Google

https://math.answers.com/other-math/How_can_transformations_alter_the_graph_of_a_parent_function

How can transformations alter the graph of a parent function? - Answers

OK, so let's call the parent function you're given f(x). There's a series of transformations a parent function can go through:-f(x) = makes the parent function reflect over the x-axisOn the other hand, f(-x) = makes it reflect over the y-axisf(x+a) = makes the parent function shift a units to the leftf(x-a) = makes the parent function shift a units to the rightf(x)+a = makes the parent function shift a units upf(x)-a = makes the parent function shift a units downf(ax) if x is a fraction like 1/2 , makes the parent function stretch by a factor of 2 (or multiply each x by 2)f(ax) if x is a whole number (or fractions greater or equal to 1) like 2, makes the parent function compress by a factor of 2 (or divide each x by 2)a*f(x) if x is a fraction like 1/2, makes the parent function get shorter by a factor of 2 (or divide each y by 2)a*f(x) if x is a whole number (or fractions greater or equal to 1) like 2, makes the parent function get taller by a factor of 2 (or multiply each y by 2)One way you can always tell what to do is that everything that is INSIDE the parentheses will be the OPPOSITE of what you think it should do. OUTSIDE the parentheses will do EXACTLY what you think it should do.And when performing the transformations, start inside the parentheses first and then move outside. For example, f(x-2)+2; move the parent function first to the right 2 units and THEN move it up 2 units.



Bing

How can transformations alter the graph of a parent function? - Answers

https://math.answers.com/other-math/How_can_transformations_alter_the_graph_of_a_parent_function

OK, so let's call the parent function you're given f(x). There's a series of transformations a parent function can go through:-f(x) = makes the parent function reflect over the x-axisOn the other hand, f(-x) = makes it reflect over the y-axisf(x+a) = makes the parent function shift a units to the leftf(x-a) = makes the parent function shift a units to the rightf(x)+a = makes the parent function shift a units upf(x)-a = makes the parent function shift a units downf(ax) if x is a fraction like 1/2 , makes the parent function stretch by a factor of 2 (or multiply each x by 2)f(ax) if x is a whole number (or fractions greater or equal to 1) like 2, makes the parent function compress by a factor of 2 (or divide each x by 2)a*f(x) if x is a fraction like 1/2, makes the parent function get shorter by a factor of 2 (or divide each y by 2)a*f(x) if x is a whole number (or fractions greater or equal to 1) like 2, makes the parent function get taller by a factor of 2 (or multiply each y by 2)One way you can always tell what to do is that everything that is INSIDE the parentheses will be the OPPOSITE of what you think it should do. OUTSIDE the parentheses will do EXACTLY what you think it should do.And when performing the transformations, start inside the parentheses first and then move outside. For example, f(x-2)+2; move the parent function first to the right 2 units and THEN move it up 2 units.



DuckDuckGo

https://math.answers.com/other-math/How_can_transformations_alter_the_graph_of_a_parent_function

How can transformations alter the graph of a parent function? - Answers

OK, so let's call the parent function you're given f(x). There's a series of transformations a parent function can go through:-f(x) = makes the parent function reflect over the x-axisOn the other hand, f(-x) = makes it reflect over the y-axisf(x+a) = makes the parent function shift a units to the leftf(x-a) = makes the parent function shift a units to the rightf(x)+a = makes the parent function shift a units upf(x)-a = makes the parent function shift a units downf(ax) if x is a fraction like 1/2 , makes the parent function stretch by a factor of 2 (or multiply each x by 2)f(ax) if x is a whole number (or fractions greater or equal to 1) like 2, makes the parent function compress by a factor of 2 (or divide each x by 2)a*f(x) if x is a fraction like 1/2, makes the parent function get shorter by a factor of 2 (or divide each y by 2)a*f(x) if x is a whole number (or fractions greater or equal to 1) like 2, makes the parent function get taller by a factor of 2 (or multiply each y by 2)One way you can always tell what to do is that everything that is INSIDE the parentheses will be the OPPOSITE of what you think it should do. OUTSIDE the parentheses will do EXACTLY what you think it should do.And when performing the transformations, start inside the parentheses first and then move outside. For example, f(x-2)+2; move the parent function first to the right 2 units and THEN move it up 2 units.

  • General Meta Tags

    22
    • title
      How can transformations alter the graph of a parent function? - Answers
    • charset
      utf-8
    • Content-Type
      text/html; charset=utf-8
    • viewport
      minimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
    • X-UA-Compatible
      IE=edge,chrome=1
  • Open Graph Meta Tags

    7
    • og:image
      https://st.answers.com/html_test_assets/Answers_Blue.jpeg
    • og:image:width
      900
    • og:image:height
      900
    • og:site_name
      Answers
    • og:description
      OK, so let's call the parent function you're given f(x). There's a series of transformations a parent function can go through:-f(x) = makes the parent function reflect over the x-axisOn the other hand, f(-x) = makes it reflect over the y-axisf(x+a) = makes the parent function shift a units to the leftf(x-a) = makes the parent function shift a units to the rightf(x)+a = makes the parent function shift a units upf(x)-a = makes the parent function shift a units downf(ax) if x is a fraction like 1/2 , makes the parent function stretch by a factor of 2 (or multiply each x by 2)f(ax) if x is a whole number (or fractions greater or equal to 1) like 2, makes the parent function compress by a factor of 2 (or divide each x by 2)a*f(x) if x is a fraction like 1/2, makes the parent function get shorter by a factor of 2 (or divide each y by 2)a*f(x) if x is a whole number (or fractions greater or equal to 1) like 2, makes the parent function get taller by a factor of 2 (or multiply each y by 2)One way you can always tell what to do is that everything that is INSIDE the parentheses will be the OPPOSITE of what you think it should do. OUTSIDE the parentheses will do EXACTLY what you think it should do.And when performing the transformations, start inside the parentheses first and then move outside. For example, f(x-2)+2; move the parent function first to the right 2 units and THEN move it up 2 units.
  • Twitter Meta Tags

    1
    • twitter:card
      summary_large_image
  • Link Tags

    16
    • alternate
      https://www.answers.com/feed.rss
    • apple-touch-icon
      /icons/180x180.png
    • canonical
      https://math.answers.com/other-math/How_can_transformations_alter_the_graph_of_a_parent_function
    • icon
      /favicon.svg
    • icon
      /icons/16x16.png

Links

58