math.answers.com/other-math/How_did_Euclid_prove_there_is_no_largest_prime

Preview meta tags from the math.answers.com website.

Linked Hostnames

8

Thumbnail

Search Engine Appearance

Google

https://math.answers.com/other-math/How_did_Euclid_prove_there_is_no_largest_prime

How did Euclid prove there is no largest prime? - Answers

The proof that there is no largest prime:Assume that there are a finite number of primes for the sake of contradiction. Then, there should be a number P that equals p1p2p3...pn+1. P is either prime or not prime (composite). If it is prime, we just show that P is larger than the largest prime in the list. If it's not prime, it must be composite. Composite always has at least one factor that is prime, but since P is not divisible by any prime in the list, the unknown prime factor(s) must be something not in the list, this also shows that there is a prime larger than the largest prime in the list. Both cases show that no matter how large a list of prime numbers, there will be always at least one larger prime outside of that list.



Bing

How did Euclid prove there is no largest prime? - Answers

https://math.answers.com/other-math/How_did_Euclid_prove_there_is_no_largest_prime

The proof that there is no largest prime:Assume that there are a finite number of primes for the sake of contradiction. Then, there should be a number P that equals p1p2p3...pn+1. P is either prime or not prime (composite). If it is prime, we just show that P is larger than the largest prime in the list. If it's not prime, it must be composite. Composite always has at least one factor that is prime, but since P is not divisible by any prime in the list, the unknown prime factor(s) must be something not in the list, this also shows that there is a prime larger than the largest prime in the list. Both cases show that no matter how large a list of prime numbers, there will be always at least one larger prime outside of that list.



DuckDuckGo

https://math.answers.com/other-math/How_did_Euclid_prove_there_is_no_largest_prime

How did Euclid prove there is no largest prime? - Answers

The proof that there is no largest prime:Assume that there are a finite number of primes for the sake of contradiction. Then, there should be a number P that equals p1p2p3...pn+1. P is either prime or not prime (composite). If it is prime, we just show that P is larger than the largest prime in the list. If it's not prime, it must be composite. Composite always has at least one factor that is prime, but since P is not divisible by any prime in the list, the unknown prime factor(s) must be something not in the list, this also shows that there is a prime larger than the largest prime in the list. Both cases show that no matter how large a list of prime numbers, there will be always at least one larger prime outside of that list.

  • General Meta Tags

    22
    • title
      How did Euclid prove there is no largest prime? - Answers
    • charset
      utf-8
    • Content-Type
      text/html; charset=utf-8
    • viewport
      minimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
    • X-UA-Compatible
      IE=edge,chrome=1
  • Open Graph Meta Tags

    7
    • og:image
      https://st.answers.com/html_test_assets/Answers_Blue.jpeg
    • og:image:width
      900
    • og:image:height
      900
    • og:site_name
      Answers
    • og:description
      The proof that there is no largest prime:Assume that there are a finite number of primes for the sake of contradiction. Then, there should be a number P that equals p1p2p3...pn+1. P is either prime or not prime (composite). If it is prime, we just show that P is larger than the largest prime in the list. If it's not prime, it must be composite. Composite always has at least one factor that is prime, but since P is not divisible by any prime in the list, the unknown prime factor(s) must be something not in the list, this also shows that there is a prime larger than the largest prime in the list. Both cases show that no matter how large a list of prime numbers, there will be always at least one larger prime outside of that list.
  • Twitter Meta Tags

    1
    • twitter:card
      summary_large_image
  • Link Tags

    16
    • alternate
      https://www.answers.com/feed.rss
    • apple-touch-icon
      /icons/180x180.png
    • canonical
      https://math.answers.com/other-math/How_did_Euclid_prove_there_is_no_largest_prime
    • icon
      /favicon.svg
    • icon
      /icons/16x16.png

Links

58