math.answers.com/other-math/How_do_you_find_the_square_root_of_350
Preview meta tags from the math.answers.com website.
Linked Hostnames
8- 33 links tomath.answers.com
- 19 links towww.answers.com
- 1 link totwitter.com
- 1 link towww.facebook.com
- 1 link towww.instagram.com
- 1 link towww.pinterest.com
- 1 link towww.tiktok.com
- 1 link towww.youtube.com
Thumbnail

Search Engine Appearance
How do you find the square root of 350? - Answers
Use the Newton-Raphson method. Let f(x) = x2 - 350 and let f'(x) = 2*x Then start with any guess, x0. The next estimate is x1 = x0 - f(x0)/f'(x0). Continue iterations with xn+1 = xn - f(xn)/f'(xn). If you start with x0 = 15 (quite a long way off, given that 152 is only 225), x2 is accurate to 6 decimal places (error = 8 in 10 million) and x3 to 13 dp (2 in 100 trillion).
Bing
How do you find the square root of 350? - Answers
Use the Newton-Raphson method. Let f(x) = x2 - 350 and let f'(x) = 2*x Then start with any guess, x0. The next estimate is x1 = x0 - f(x0)/f'(x0). Continue iterations with xn+1 = xn - f(xn)/f'(xn). If you start with x0 = 15 (quite a long way off, given that 152 is only 225), x2 is accurate to 6 decimal places (error = 8 in 10 million) and x3 to 13 dp (2 in 100 trillion).
DuckDuckGo
How do you find the square root of 350? - Answers
Use the Newton-Raphson method. Let f(x) = x2 - 350 and let f'(x) = 2*x Then start with any guess, x0. The next estimate is x1 = x0 - f(x0)/f'(x0). Continue iterations with xn+1 = xn - f(xn)/f'(xn). If you start with x0 = 15 (quite a long way off, given that 152 is only 225), x2 is accurate to 6 decimal places (error = 8 in 10 million) and x3 to 13 dp (2 in 100 trillion).
General Meta Tags
22- titleHow do you find the square root of 350? - Answers
- charsetutf-8
- Content-Typetext/html; charset=utf-8
- viewportminimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
- X-UA-CompatibleIE=edge,chrome=1
Open Graph Meta Tags
7- og:imagehttps://st.answers.com/html_test_assets/Answers_Blue.jpeg
- og:image:width900
- og:image:height900
- og:site_nameAnswers
- og:descriptionUse the Newton-Raphson method. Let f(x) = x2 - 350 and let f'(x) = 2*x Then start with any guess, x0. The next estimate is x1 = x0 - f(x0)/f'(x0). Continue iterations with xn+1 = xn - f(xn)/f'(xn). If you start with x0 = 15 (quite a long way off, given that 152 is only 225), x2 is accurate to 6 decimal places (error = 8 in 10 million) and x3 to 13 dp (2 in 100 trillion).
Twitter Meta Tags
1- twitter:cardsummary_large_image
Link Tags
16- alternatehttps://www.answers.com/feed.rss
- apple-touch-icon/icons/180x180.png
- canonicalhttps://math.answers.com/other-math/How_do_you_find_the_square_root_of_350
- icon/favicon.svg
- icon/icons/16x16.png
Links
58- https://math.answers.com
- https://math.answers.com/other-math/Can-a-multiple-of-10-be-an-odd-number
- https://math.answers.com/other-math/How_do_you_find_the_square_root_of_350
- https://math.answers.com/other-math/How_much_force_in_Newtons_does_a_baseball_pitcher_have_to_exert_on_a_250_g_baseball_to_make_it_accelerate_to_50_miles_per_second_the_instant_that_it_leaves_his_hand
- https://math.answers.com/other-math/Is_year_9_in_key_stage_4