math.answers.com/other-math/How_do_you_find_the_sum_of_a_geometric_series

Preview meta tags from the math.answers.com website.

Linked Hostnames

8

Thumbnail

Search Engine Appearance

Google

https://math.answers.com/other-math/How_do_you_find_the_sum_of_a_geometric_series

How do you find the sum of a geometric series? - Answers

Let's say Un=aqn and Sn=a+aq+aq2+aq3+aq4+aq5+...+aqn Sn = a (1+q+q2+q3+q4+q5+...+qn) A=(Sn/a) - q (Sn/a) = (1+q+q2+q3+q4+q5+...+qn) - q(1+q+q2+q3+q4+q5+...+qn) A=1+q+q2+q3+q4+q5+...+qn-q-q2-q3-....-qn-qn+1=1-qn+1 So A = 1-qn+1 = Sn/a (1-q) So Sn = a (1-qn+1)/(1-q)



Bing

How do you find the sum of a geometric series? - Answers

https://math.answers.com/other-math/How_do_you_find_the_sum_of_a_geometric_series

Let's say Un=aqn and Sn=a+aq+aq2+aq3+aq4+aq5+...+aqn Sn = a (1+q+q2+q3+q4+q5+...+qn) A=(Sn/a) - q (Sn/a) = (1+q+q2+q3+q4+q5+...+qn) - q(1+q+q2+q3+q4+q5+...+qn) A=1+q+q2+q3+q4+q5+...+qn-q-q2-q3-....-qn-qn+1=1-qn+1 So A = 1-qn+1 = Sn/a (1-q) So Sn = a (1-qn+1)/(1-q)



DuckDuckGo

https://math.answers.com/other-math/How_do_you_find_the_sum_of_a_geometric_series

How do you find the sum of a geometric series? - Answers

Let's say Un=aqn and Sn=a+aq+aq2+aq3+aq4+aq5+...+aqn Sn = a (1+q+q2+q3+q4+q5+...+qn) A=(Sn/a) - q (Sn/a) = (1+q+q2+q3+q4+q5+...+qn) - q(1+q+q2+q3+q4+q5+...+qn) A=1+q+q2+q3+q4+q5+...+qn-q-q2-q3-....-qn-qn+1=1-qn+1 So A = 1-qn+1 = Sn/a (1-q) So Sn = a (1-qn+1)/(1-q)

  • General Meta Tags

    22
    • title
      How do you find the sum of a geometric series? - Answers
    • charset
      utf-8
    • Content-Type
      text/html; charset=utf-8
    • viewport
      minimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
    • X-UA-Compatible
      IE=edge,chrome=1
  • Open Graph Meta Tags

    7
    • og:image
      https://st.answers.com/html_test_assets/Answers_Blue.jpeg
    • og:image:width
      900
    • og:image:height
      900
    • og:site_name
      Answers
    • og:description
      Let's say Un=aqn and Sn=a+aq+aq2+aq3+aq4+aq5+...+aqn Sn = a (1+q+q2+q3+q4+q5+...+qn) A=(Sn/a) - q (Sn/a) = (1+q+q2+q3+q4+q5+...+qn) - q(1+q+q2+q3+q4+q5+...+qn) A=1+q+q2+q3+q4+q5+...+qn-q-q2-q3-....-qn-qn+1=1-qn+1 So A = 1-qn+1 = Sn/a (1-q) So Sn = a (1-qn+1)/(1-q)
  • Twitter Meta Tags

    1
    • twitter:card
      summary_large_image
  • Link Tags

    16
    • alternate
      https://www.answers.com/feed.rss
    • apple-touch-icon
      /icons/180x180.png
    • canonical
      https://math.answers.com/other-math/How_do_you_find_the_sum_of_a_geometric_series
    • icon
      /favicon.svg
    • icon
      /icons/16x16.png

Links

58