math.answers.com/other-math/How_do_you_solve_the_equation_5.2_log4_2x16

Preview meta tags from the math.answers.com website.

Linked Hostnames

8

Thumbnail

Search Engine Appearance

Google

https://math.answers.com/other-math/How_do_you_solve_the_equation_5.2_log4_2x16

How do you solve the equation 5.2 log4 2x16? - Answers

Due to limitations with browsers mathematical operators (especially + =) get stripped from questions (leaving questions with not enough information to answer them) and it is not entirely clear what the log4 bit means. I guess that the log4 bit is logarithms to base 4 of 2x^16 (which I'll write as log_4(2x^16) for brevity). If this is so, use normal algebraic operations to make log_4(2x^16) the subject of the equation. With logs there are useful rules; given 2 numbers 'a' and 'b': log(ab) = log(a) + log(b) log(a^b) = b × log(a) Which means: log_4(2x^16) = log_4(2) + log_4(x^16) = log_4(2) + 16 × log(x) and the equation can be further rearranged: log_4(2x^16) = <whatever> → log_4(2) + 16 × log(x) = <whatever> → log(x) = (<whatever> - log_4(2)) / 16 Logarithms tell you the power to which the base of the logarithm must be raised to get its argument, for example when using common logs: lg 100 = 2 since 10 must be raised to the power 2 to get 100, ie 10² = 100. (lg is the abbreviation for logs to base 10; ln, or natural logs, is the abbreviation for logs to the base e.) With logs to base 4, it is 4 that is raised to the power of the log to get the original value. eg log_4(16) = 2 since 4^2 = 16. log_4(2) can be worked out: The log to any base of the base is 1 (since any number to the power 1 is itself). Now 2 × 2 = 2² = 4. → log_4(4) = 1 → log_4(2²) = 1 → 2 × log_4(2) = 1 → log_4(2) = ½ → log(x) = (<whatever> - ½) / 16 Back to the rearranged equation; with logs to base 4, if you make both sides the power of 4 you'll get: 4^(log_4(x)) = 4^(<whatever>) → x = 4^(<whatever>) which now solves for x.



Bing

How do you solve the equation 5.2 log4 2x16? - Answers

https://math.answers.com/other-math/How_do_you_solve_the_equation_5.2_log4_2x16

Due to limitations with browsers mathematical operators (especially + =) get stripped from questions (leaving questions with not enough information to answer them) and it is not entirely clear what the log4 bit means. I guess that the log4 bit is logarithms to base 4 of 2x^16 (which I'll write as log_4(2x^16) for brevity). If this is so, use normal algebraic operations to make log_4(2x^16) the subject of the equation. With logs there are useful rules; given 2 numbers 'a' and 'b': log(ab) = log(a) + log(b) log(a^b) = b × log(a) Which means: log_4(2x^16) = log_4(2) + log_4(x^16) = log_4(2) + 16 × log(x) and the equation can be further rearranged: log_4(2x^16) = <whatever> → log_4(2) + 16 × log(x) = <whatever> → log(x) = (<whatever> - log_4(2)) / 16 Logarithms tell you the power to which the base of the logarithm must be raised to get its argument, for example when using common logs: lg 100 = 2 since 10 must be raised to the power 2 to get 100, ie 10² = 100. (lg is the abbreviation for logs to base 10; ln, or natural logs, is the abbreviation for logs to the base e.) With logs to base 4, it is 4 that is raised to the power of the log to get the original value. eg log_4(16) = 2 since 4^2 = 16. log_4(2) can be worked out: The log to any base of the base is 1 (since any number to the power 1 is itself). Now 2 × 2 = 2² = 4. → log_4(4) = 1 → log_4(2²) = 1 → 2 × log_4(2) = 1 → log_4(2) = ½ → log(x) = (<whatever> - ½) / 16 Back to the rearranged equation; with logs to base 4, if you make both sides the power of 4 you'll get: 4^(log_4(x)) = 4^(<whatever>) → x = 4^(<whatever>) which now solves for x.



DuckDuckGo

https://math.answers.com/other-math/How_do_you_solve_the_equation_5.2_log4_2x16

How do you solve the equation 5.2 log4 2x16? - Answers

Due to limitations with browsers mathematical operators (especially + =) get stripped from questions (leaving questions with not enough information to answer them) and it is not entirely clear what the log4 bit means. I guess that the log4 bit is logarithms to base 4 of 2x^16 (which I'll write as log_4(2x^16) for brevity). If this is so, use normal algebraic operations to make log_4(2x^16) the subject of the equation. With logs there are useful rules; given 2 numbers 'a' and 'b': log(ab) = log(a) + log(b) log(a^b) = b × log(a) Which means: log_4(2x^16) = log_4(2) + log_4(x^16) = log_4(2) + 16 × log(x) and the equation can be further rearranged: log_4(2x^16) = <whatever> → log_4(2) + 16 × log(x) = <whatever> → log(x) = (<whatever> - log_4(2)) / 16 Logarithms tell you the power to which the base of the logarithm must be raised to get its argument, for example when using common logs: lg 100 = 2 since 10 must be raised to the power 2 to get 100, ie 10² = 100. (lg is the abbreviation for logs to base 10; ln, or natural logs, is the abbreviation for logs to the base e.) With logs to base 4, it is 4 that is raised to the power of the log to get the original value. eg log_4(16) = 2 since 4^2 = 16. log_4(2) can be worked out: The log to any base of the base is 1 (since any number to the power 1 is itself). Now 2 × 2 = 2² = 4. → log_4(4) = 1 → log_4(2²) = 1 → 2 × log_4(2) = 1 → log_4(2) = ½ → log(x) = (<whatever> - ½) / 16 Back to the rearranged equation; with logs to base 4, if you make both sides the power of 4 you'll get: 4^(log_4(x)) = 4^(<whatever>) → x = 4^(<whatever>) which now solves for x.

  • General Meta Tags

    22
    • title
      How do you solve the equation 5.2 log4 2x16? - Answers
    • charset
      utf-8
    • Content-Type
      text/html; charset=utf-8
    • viewport
      minimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
    • X-UA-Compatible
      IE=edge,chrome=1
  • Open Graph Meta Tags

    7
    • og:image
      https://st.answers.com/html_test_assets/Answers_Blue.jpeg
    • og:image:width
      900
    • og:image:height
      900
    • og:site_name
      Answers
    • og:description
      Due to limitations with browsers mathematical operators (especially + =) get stripped from questions (leaving questions with not enough information to answer them) and it is not entirely clear what the log4 bit means. I guess that the log4 bit is logarithms to base 4 of 2x^16 (which I'll write as log_4(2x^16) for brevity). If this is so, use normal algebraic operations to make log_4(2x^16) the subject of the equation. With logs there are useful rules; given 2 numbers 'a' and 'b': log(ab) = log(a) + log(b) log(a^b) = b × log(a) Which means: log_4(2x^16) = log_4(2) + log_4(x^16) = log_4(2) + 16 × log(x) and the equation can be further rearranged: log_4(2x^16) = <whatever> → log_4(2) + 16 × log(x) = <whatever> → log(x) = (<whatever> - log_4(2)) / 16 Logarithms tell you the power to which the base of the logarithm must be raised to get its argument, for example when using common logs: lg 100 = 2 since 10 must be raised to the power 2 to get 100, ie 10² = 100. (lg is the abbreviation for logs to base 10; ln, or natural logs, is the abbreviation for logs to the base e.) With logs to base 4, it is 4 that is raised to the power of the log to get the original value. eg log_4(16) = 2 since 4^2 = 16. log_4(2) can be worked out: The log to any base of the base is 1 (since any number to the power 1 is itself). Now 2 × 2 = 2² = 4. → log_4(4) = 1 → log_4(2²) = 1 → 2 × log_4(2) = 1 → log_4(2) = ½ → log(x) = (<whatever> - ½) / 16 Back to the rearranged equation; with logs to base 4, if you make both sides the power of 4 you'll get: 4^(log_4(x)) = 4^(<whatever>) → x = 4^(<whatever>) which now solves for x.
  • Twitter Meta Tags

    1
    • twitter:card
      summary_large_image
  • Link Tags

    16
    • alternate
      https://www.answers.com/feed.rss
    • apple-touch-icon
      /icons/180x180.png
    • canonical
      https://math.answers.com/other-math/How_do_you_solve_the_equation_5.2_log4_2x16
    • icon
      /favicon.svg
    • icon
      /icons/16x16.png

Links

58