mathworld.wolfram.com/AlbersEqual-AreaConicProjection.html

Preview meta tags from the mathworld.wolfram.com website.

Linked Hostnames

5

Thumbnail

Search Engine Appearance

Google

https://mathworld.wolfram.com/AlbersEqual-AreaConicProjection.html

Albers Equal-Area Conic Projection -- from Wolfram MathWorld

Let phi_0 be the latitude for the origin of the Cartesian coordinates and lambda_0 its longitude, and let phi_1 and phi_2 be the standard parallels. Then for a unit sphere, the Albers equal-area conic projection maps latitude and longitude (phi,lambda) to Cartesian (x,y) coordinates x = rhosintheta (1) y = rho_0-rhocostheta, (2) where n = 1/2(sinphi_1+sinphi_2) (3) theta = n(lambda-lambda_0) (4) C = cos^2phi_1+2nsinphi_1 (5) rho = (sqrt(C-2nsinphi))/n (6) rho_0 =...



Bing

Albers Equal-Area Conic Projection -- from Wolfram MathWorld

https://mathworld.wolfram.com/AlbersEqual-AreaConicProjection.html

Let phi_0 be the latitude for the origin of the Cartesian coordinates and lambda_0 its longitude, and let phi_1 and phi_2 be the standard parallels. Then for a unit sphere, the Albers equal-area conic projection maps latitude and longitude (phi,lambda) to Cartesian (x,y) coordinates x = rhosintheta (1) y = rho_0-rhocostheta, (2) where n = 1/2(sinphi_1+sinphi_2) (3) theta = n(lambda-lambda_0) (4) C = cos^2phi_1+2nsinphi_1 (5) rho = (sqrt(C-2nsinphi))/n (6) rho_0 =...



DuckDuckGo

https://mathworld.wolfram.com/AlbersEqual-AreaConicProjection.html

Albers Equal-Area Conic Projection -- from Wolfram MathWorld

Let phi_0 be the latitude for the origin of the Cartesian coordinates and lambda_0 its longitude, and let phi_1 and phi_2 be the standard parallels. Then for a unit sphere, the Albers equal-area conic projection maps latitude and longitude (phi,lambda) to Cartesian (x,y) coordinates x = rhosintheta (1) y = rho_0-rhocostheta, (2) where n = 1/2(sinphi_1+sinphi_2) (3) theta = n(lambda-lambda_0) (4) C = cos^2phi_1+2nsinphi_1 (5) rho = (sqrt(C-2nsinphi))/n (6) rho_0 =...

  • General Meta Tags

    18
    • title
      Albers Equal-Area Conic Projection -- from Wolfram MathWorld
    • DC.Title
      Albers Equal-Area Conic Projection
    • DC.Creator
      Weisstein, Eric W.
    • DC.Description
      Let phi_0 be the latitude for the origin of the Cartesian coordinates and lambda_0 its longitude, and let phi_1 and phi_2 be the standard parallels. Then for a unit sphere, the Albers equal-area conic projection maps latitude and longitude (phi,lambda) to Cartesian (x,y) coordinates x = rhosintheta (1) y = rho_0-rhocostheta, (2) where n = 1/2(sinphi_1+sinphi_2) (3) theta = n(lambda-lambda_0) (4) C = cos^2phi_1+2nsinphi_1 (5) rho = (sqrt(C-2nsinphi))/n (6) rho_0 =...
    • description
      Let phi_0 be the latitude for the origin of the Cartesian coordinates and lambda_0 its longitude, and let phi_1 and phi_2 be the standard parallels. Then for a unit sphere, the Albers equal-area conic projection maps latitude and longitude (phi,lambda) to Cartesian (x,y) coordinates x = rhosintheta (1) y = rho_0-rhocostheta, (2) where n = 1/2(sinphi_1+sinphi_2) (3) theta = n(lambda-lambda_0) (4) C = cos^2phi_1+2nsinphi_1 (5) rho = (sqrt(C-2nsinphi))/n (6) rho_0 =...
  • Open Graph Meta Tags

    5
    • og:image
      https://mathworld.wolfram.com/images/socialmedia/share/ogimage_AlbersEqual-AreaConicProjection.png
    • og:url
      https://mathworld.wolfram.com/AlbersEqual-AreaConicProjection.html
    • og:type
      website
    • og:title
      Albers Equal-Area Conic Projection -- from Wolfram MathWorld
    • og:description
      Let phi_0 be the latitude for the origin of the Cartesian coordinates and lambda_0 its longitude, and let phi_1 and phi_2 be the standard parallels. Then for a unit sphere, the Albers equal-area conic projection maps latitude and longitude (phi,lambda) to Cartesian (x,y) coordinates x = rhosintheta (1) y = rho_0-rhocostheta, (2) where n = 1/2(sinphi_1+sinphi_2) (3) theta = n(lambda-lambda_0) (4) C = cos^2phi_1+2nsinphi_1 (5) rho = (sqrt(C-2nsinphi))/n (6) rho_0 =...
  • Twitter Meta Tags

    5
    • twitter:card
      summary_large_image
    • twitter:site
      @WolframResearch
    • twitter:title
      Albers Equal-Area Conic Projection -- from Wolfram MathWorld
    • twitter:description
      Let phi_0 be the latitude for the origin of the Cartesian coordinates and lambda_0 its longitude, and let phi_1 and phi_2 be the standard parallels. Then for a unit sphere, the Albers equal-area conic projection maps latitude and longitude (phi,lambda) to Cartesian (x,y) coordinates x = rhosintheta (1) y = rho_0-rhocostheta, (2) where n = 1/2(sinphi_1+sinphi_2) (3) theta = n(lambda-lambda_0) (4) C = cos^2phi_1+2nsinphi_1 (5) rho = (sqrt(C-2nsinphi))/n (6) rho_0 =...
    • twitter:image:src
      https://mathworld.wolfram.com/images/socialmedia/share/ogimage_AlbersEqual-AreaConicProjection.png
  • Link Tags

    4
    • canonical
      https://mathworld.wolfram.com/AlbersEqual-AreaConicProjection.html
    • preload
      //www.wolframcdn.com/fonts/source-sans-pro/1.0/global.css
    • stylesheet
      /css/styles.css
    • stylesheet
      /common/js/c2c/1.0/WolframC2CGui.css.en

Links

41