
mathworld.wolfram.com/AlbersEqual-AreaConicProjection.html
Preview meta tags from the mathworld.wolfram.com website.
Linked Hostnames
5- 30 links tomathworld.wolfram.com
- 4 links towww.wolfram.com
- 4 links towww.wolframalpha.com
- 2 links towww.amazon.com
- 1 link towolframalpha.com
Thumbnail

Search Engine Appearance
Albers Equal-Area Conic Projection -- from Wolfram MathWorld
Let phi_0 be the latitude for the origin of the Cartesian coordinates and lambda_0 its longitude, and let phi_1 and phi_2 be the standard parallels. Then for a unit sphere, the Albers equal-area conic projection maps latitude and longitude (phi,lambda) to Cartesian (x,y) coordinates x = rhosintheta (1) y = rho_0-rhocostheta, (2) where n = 1/2(sinphi_1+sinphi_2) (3) theta = n(lambda-lambda_0) (4) C = cos^2phi_1+2nsinphi_1 (5) rho = (sqrt(C-2nsinphi))/n (6) rho_0 =...
Bing
Albers Equal-Area Conic Projection -- from Wolfram MathWorld
Let phi_0 be the latitude for the origin of the Cartesian coordinates and lambda_0 its longitude, and let phi_1 and phi_2 be the standard parallels. Then for a unit sphere, the Albers equal-area conic projection maps latitude and longitude (phi,lambda) to Cartesian (x,y) coordinates x = rhosintheta (1) y = rho_0-rhocostheta, (2) where n = 1/2(sinphi_1+sinphi_2) (3) theta = n(lambda-lambda_0) (4) C = cos^2phi_1+2nsinphi_1 (5) rho = (sqrt(C-2nsinphi))/n (6) rho_0 =...
DuckDuckGo
Albers Equal-Area Conic Projection -- from Wolfram MathWorld
Let phi_0 be the latitude for the origin of the Cartesian coordinates and lambda_0 its longitude, and let phi_1 and phi_2 be the standard parallels. Then for a unit sphere, the Albers equal-area conic projection maps latitude and longitude (phi,lambda) to Cartesian (x,y) coordinates x = rhosintheta (1) y = rho_0-rhocostheta, (2) where n = 1/2(sinphi_1+sinphi_2) (3) theta = n(lambda-lambda_0) (4) C = cos^2phi_1+2nsinphi_1 (5) rho = (sqrt(C-2nsinphi))/n (6) rho_0 =...
General Meta Tags
18- titleAlbers Equal-Area Conic Projection -- from Wolfram MathWorld
- DC.TitleAlbers Equal-Area Conic Projection
- DC.CreatorWeisstein, Eric W.
- DC.DescriptionLet phi_0 be the latitude for the origin of the Cartesian coordinates and lambda_0 its longitude, and let phi_1 and phi_2 be the standard parallels. Then for a unit sphere, the Albers equal-area conic projection maps latitude and longitude (phi,lambda) to Cartesian (x,y) coordinates x = rhosintheta (1) y = rho_0-rhocostheta, (2) where n = 1/2(sinphi_1+sinphi_2) (3) theta = n(lambda-lambda_0) (4) C = cos^2phi_1+2nsinphi_1 (5) rho = (sqrt(C-2nsinphi))/n (6) rho_0 =...
- descriptionLet phi_0 be the latitude for the origin of the Cartesian coordinates and lambda_0 its longitude, and let phi_1 and phi_2 be the standard parallels. Then for a unit sphere, the Albers equal-area conic projection maps latitude and longitude (phi,lambda) to Cartesian (x,y) coordinates x = rhosintheta (1) y = rho_0-rhocostheta, (2) where n = 1/2(sinphi_1+sinphi_2) (3) theta = n(lambda-lambda_0) (4) C = cos^2phi_1+2nsinphi_1 (5) rho = (sqrt(C-2nsinphi))/n (6) rho_0 =...
Open Graph Meta Tags
5- og:imagehttps://mathworld.wolfram.com/images/socialmedia/share/ogimage_AlbersEqual-AreaConicProjection.png
- og:urlhttps://mathworld.wolfram.com/AlbersEqual-AreaConicProjection.html
- og:typewebsite
- og:titleAlbers Equal-Area Conic Projection -- from Wolfram MathWorld
- og:descriptionLet phi_0 be the latitude for the origin of the Cartesian coordinates and lambda_0 its longitude, and let phi_1 and phi_2 be the standard parallels. Then for a unit sphere, the Albers equal-area conic projection maps latitude and longitude (phi,lambda) to Cartesian (x,y) coordinates x = rhosintheta (1) y = rho_0-rhocostheta, (2) where n = 1/2(sinphi_1+sinphi_2) (3) theta = n(lambda-lambda_0) (4) C = cos^2phi_1+2nsinphi_1 (5) rho = (sqrt(C-2nsinphi))/n (6) rho_0 =...
Twitter Meta Tags
5- twitter:cardsummary_large_image
- twitter:site@WolframResearch
- twitter:titleAlbers Equal-Area Conic Projection -- from Wolfram MathWorld
- twitter:descriptionLet phi_0 be the latitude for the origin of the Cartesian coordinates and lambda_0 its longitude, and let phi_1 and phi_2 be the standard parallels. Then for a unit sphere, the Albers equal-area conic projection maps latitude and longitude (phi,lambda) to Cartesian (x,y) coordinates x = rhosintheta (1) y = rho_0-rhocostheta, (2) where n = 1/2(sinphi_1+sinphi_2) (3) theta = n(lambda-lambda_0) (4) C = cos^2phi_1+2nsinphi_1 (5) rho = (sqrt(C-2nsinphi))/n (6) rho_0 =...
- twitter:image:srchttps://mathworld.wolfram.com/images/socialmedia/share/ogimage_AlbersEqual-AreaConicProjection.png
Link Tags
4- canonicalhttps://mathworld.wolfram.com/AlbersEqual-AreaConicProjection.html
- preload//www.wolframcdn.com/fonts/source-sans-pro/1.0/global.css
- stylesheet/css/styles.css
- stylesheet/common/js/c2c/1.0/WolframC2CGui.css.en
Links
41- http://www.amazon.com/exec/obidos/ASIN/9998605067/ref=nosim/ericstreasuretro
- http://www.wolframalpha.com/input/?i=map+projections
- https://mathworld.wolfram.com
- https://mathworld.wolfram.com/AlbersEqual-AreaConicProjection.html
- https://mathworld.wolfram.com/CartesianCoordinates.html