
mathworld.wolfram.com/Area-PreservingMap.html
Preview meta tags from the mathworld.wolfram.com website.
Linked Hostnames
5- 28 links tomathworld.wolfram.com
- 4 links towww.wolfram.com
- 3 links towww.wolframalpha.com
- 1 link towolframalpha.com
- 1 link towww.amazon.com
Thumbnail

Search Engine Appearance
Area-Preserving Map -- from Wolfram MathWorld
A map F from R^n to R^n is area-preserving if m(F^(-1)(A))=m(A) for every subregion A of R^n, where m(A) is the n-dimensional measure of A. A linear transformation is area-preserving if its corresponding determinant has absolute value 1.
Bing
Area-Preserving Map -- from Wolfram MathWorld
A map F from R^n to R^n is area-preserving if m(F^(-1)(A))=m(A) for every subregion A of R^n, where m(A) is the n-dimensional measure of A. A linear transformation is area-preserving if its corresponding determinant has absolute value 1.
DuckDuckGo
Area-Preserving Map -- from Wolfram MathWorld
A map F from R^n to R^n is area-preserving if m(F^(-1)(A))=m(A) for every subregion A of R^n, where m(A) is the n-dimensional measure of A. A linear transformation is area-preserving if its corresponding determinant has absolute value 1.
General Meta Tags
17- titleArea-Preserving Map -- from Wolfram MathWorld
- DC.TitleArea-Preserving Map
- DC.CreatorWeisstein, Eric W.
- DC.DescriptionA map F from R^n to R^n is area-preserving if m(F^(-1)(A))=m(A) for every subregion A of R^n, where m(A) is the n-dimensional measure of A. A linear transformation is area-preserving if its corresponding determinant has absolute value 1.
- descriptionA map F from R^n to R^n is area-preserving if m(F^(-1)(A))=m(A) for every subregion A of R^n, where m(A) is the n-dimensional measure of A. A linear transformation is area-preserving if its corresponding determinant has absolute value 1.
Open Graph Meta Tags
5- og:imagehttps://mathworld.wolfram.com/images/socialmedia/share.png
- og:urlhttps://mathworld.wolfram.com/Area-PreservingMap.html
- og:typewebsite
- og:titleArea-Preserving Map -- from Wolfram MathWorld
- og:descriptionA map F from R^n to R^n is area-preserving if m(F^(-1)(A))=m(A) for every subregion A of R^n, where m(A) is the n-dimensional measure of A. A linear transformation is area-preserving if its corresponding determinant has absolute value 1.
Twitter Meta Tags
5- twitter:cardsummary_large_image
- twitter:site@WolframResearch
- twitter:titleArea-Preserving Map -- from Wolfram MathWorld
- twitter:descriptionA map F from R^n to R^n is area-preserving if m(F^(-1)(A))=m(A) for every subregion A of R^n, where m(A) is the n-dimensional measure of A. A linear transformation is area-preserving if its corresponding determinant has absolute value 1.
- twitter:image:srchttps://mathworld.wolfram.com/images/socialmedia/share.png
Link Tags
4- canonicalhttps://mathworld.wolfram.com/Area-PreservingMap.html
- preload//www.wolframcdn.com/fonts/source-sans-pro/1.0/global.css
- stylesheet/css/styles.css
- stylesheet/common/js/c2c/1.0/WolframC2CGui.css.en
Links
37- http://www.wolframalpha.com/input/?i=Laplace+x%5E2%2By%5E2%2Bz%5E2
- https://mathworld.wolfram.com
- https://mathworld.wolfram.com/Area-PreservingMap.html
- https://mathworld.wolfram.com/Area.html
- https://mathworld.wolfram.com/ConformalMapping.html