
mathworld.wolfram.com/ClosedBall.html
Preview meta tags from the mathworld.wolfram.com website.
Linked Hostnames
5- 23 links tomathworld.wolfram.com
- 4 links towww.wolfram.com
- 4 links towww.wolframalpha.com
- 2 links towww.amazon.com
- 1 link towolframalpha.com
Thumbnail

Search Engine Appearance
https://mathworld.wolfram.com/ClosedBall.html
Closed Ball -- from Wolfram MathWorld
The closed ball with center x and radius r is defined by B_r(x)={y:|y-x|<=r}.
Bing
Closed Ball -- from Wolfram MathWorld
https://mathworld.wolfram.com/ClosedBall.html
The closed ball with center x and radius r is defined by B_r(x)={y:|y-x|<=r}.
DuckDuckGo
https://mathworld.wolfram.com/ClosedBall.html
Closed Ball -- from Wolfram MathWorld
The closed ball with center x and radius r is defined by B_r(x)={y:|y-x|<=r}.
General Meta Tags
18- titleClosed Ball -- from Wolfram MathWorld
- DC.TitleClosed Ball
- DC.CreatorWeisstein, Eric W.
- DC.DescriptionThe closed ball with center x and radius r is defined by B_r(x)={y:|y-x|<=r}.
- descriptionThe closed ball with center x and radius r is defined by B_r(x)={y:|y-x|<=r}.
Open Graph Meta Tags
5- og:imagehttps://mathworld.wolfram.com/images/socialmedia/share.png
- og:urlhttps://mathworld.wolfram.com/ClosedBall.html
- og:typewebsite
- og:titleClosed Ball -- from Wolfram MathWorld
- og:descriptionThe closed ball with center x and radius r is defined by B_r(x)={y:|y-x|<=r}.
Twitter Meta Tags
5- twitter:cardsummary_large_image
- twitter:site@WolframResearch
- twitter:titleClosed Ball -- from Wolfram MathWorld
- twitter:descriptionThe closed ball with center x and radius r is defined by B_r(x)={y:|y-x|<=r}.
- twitter:image:srchttps://mathworld.wolfram.com/images/socialmedia/share.png
Link Tags
4- canonicalhttps://mathworld.wolfram.com/ClosedBall.html
- preload//www.wolframcdn.com/fonts/source-sans-pro/1.0/global.css
- stylesheet/css/styles.css
- stylesheet/common/js/c2c/1.0/WolframC2CGui.css.en
Links
34- http://www.amazon.com/exec/obidos/ASIN/0387975063/ref=nosim/ericstreasuretro
- http://www.wolframalpha.com/input/?i=last+digit+of+9%5E9%5E9
- https://mathworld.wolfram.com
- https://mathworld.wolfram.com/Ball.html
- https://mathworld.wolfram.com/ClosedBall.html