mathworld.wolfram.com/KnuthUp-ArrowNotation.html

Preview meta tags from the mathworld.wolfram.com website.

Linked Hostnames

5

Thumbnail

Search Engine Appearance

Google

https://mathworld.wolfram.com/KnuthUp-ArrowNotation.html

Knuth Up-Arrow Notation -- from Wolfram MathWorld

Knuth's up-arrow notation is a notation invented by Knuth (1976) to represent large numbers in which evaluation proceeds from the right (Conway and Guy 1996, p. 60): m^n m·m...m_()_(n) m^^n m^m^...^m_()_(n) m^^^n m^^m^^...^^m_()_(n) For example, m^n = m^n (1) m^^n = m^...^m_()_(n)=m^(m^(·^(·^(·^m))))_()_(n) (2) m^^2 = m^m_()_(2)=m^m=m^m (3) m^^3 = m^m^m_()_(3)=m^(m^m) (4) = m^m^m=m^(m^m) (5) m^^^2 = m^^m_()_(2)=m^^m=m^(m^(·^(·^(·^m))))_()_(m) (6) ...



Bing

Knuth Up-Arrow Notation -- from Wolfram MathWorld

https://mathworld.wolfram.com/KnuthUp-ArrowNotation.html

Knuth's up-arrow notation is a notation invented by Knuth (1976) to represent large numbers in which evaluation proceeds from the right (Conway and Guy 1996, p. 60): m^n m·m...m_()_(n) m^^n m^m^...^m_()_(n) m^^^n m^^m^^...^^m_()_(n) For example, m^n = m^n (1) m^^n = m^...^m_()_(n)=m^(m^(·^(·^(·^m))))_()_(n) (2) m^^2 = m^m_()_(2)=m^m=m^m (3) m^^3 = m^m^m_()_(3)=m^(m^m) (4) = m^m^m=m^(m^m) (5) m^^^2 = m^^m_()_(2)=m^^m=m^(m^(·^(·^(·^m))))_()_(m) (6) ...



DuckDuckGo

https://mathworld.wolfram.com/KnuthUp-ArrowNotation.html

Knuth Up-Arrow Notation -- from Wolfram MathWorld

Knuth's up-arrow notation is a notation invented by Knuth (1976) to represent large numbers in which evaluation proceeds from the right (Conway and Guy 1996, p. 60): m^n m·m...m_()_(n) m^^n m^m^...^m_()_(n) m^^^n m^^m^^...^^m_()_(n) For example, m^n = m^n (1) m^^n = m^...^m_()_(n)=m^(m^(·^(·^(·^m))))_()_(n) (2) m^^2 = m^m_()_(2)=m^m=m^m (3) m^^3 = m^m^m_()_(3)=m^(m^m) (4) = m^m^m=m^(m^m) (5) m^^^2 = m^^m_()_(2)=m^^m=m^(m^(·^(·^(·^m))))_()_(m) (6) ...

  • General Meta Tags

    20
    • title
      Knuth Up-Arrow Notation -- from Wolfram MathWorld
    • DC.Title
      Knuth Up-Arrow Notation
    • DC.Creator
      Weisstein, Eric W.
    • DC.Description
      Knuth's up-arrow notation is a notation invented by Knuth (1976) to represent large numbers in which evaluation proceeds from the right (Conway and Guy 1996, p. 60): m^n m·m...m_()_(n) m^^n m^m^...^m_()_(n) m^^^n m^^m^^...^^m_()_(n) For example, m^n = m^n (1) m^^n = m^...^m_()_(n)=m^(m^(·^(·^(·^m))))_()_(n) (2) m^^2 = m^m_()_(2)=m^m=m^m (3) m^^3 = m^m^m_()_(3)=m^(m^m) (4) = m^m^m=m^(m^m) (5) m^^^2 = m^^m_()_(2)=m^^m=m^(m^(·^(·^(·^m))))_()_(m) (6) ...
    • description
      Knuth's up-arrow notation is a notation invented by Knuth (1976) to represent large numbers in which evaluation proceeds from the right (Conway and Guy 1996, p. 60): m^n m·m...m_()_(n) m^^n m^m^...^m_()_(n) m^^^n m^^m^^...^^m_()_(n) For example, m^n = m^n (1) m^^n = m^...^m_()_(n)=m^(m^(·^(·^(·^m))))_()_(n) (2) m^^2 = m^m_()_(2)=m^m=m^m (3) m^^3 = m^m^m_()_(3)=m^(m^m) (4) = m^m^m=m^(m^m) (5) m^^^2 = m^^m_()_(2)=m^^m=m^(m^(·^(·^(·^m))))_()_(m) (6) ...
  • Open Graph Meta Tags

    5
    • og:image
      https://mathworld.wolfram.com/images/socialmedia/share/ogimage_KnuthUp-ArrowNotation.png
    • og:url
      https://mathworld.wolfram.com/KnuthUp-ArrowNotation.html
    • og:type
      website
    • og:title
      Knuth Up-Arrow Notation -- from Wolfram MathWorld
    • og:description
      Knuth's up-arrow notation is a notation invented by Knuth (1976) to represent large numbers in which evaluation proceeds from the right (Conway and Guy 1996, p. 60): m^n m·m...m_()_(n) m^^n m^m^...^m_()_(n) m^^^n m^^m^^...^^m_()_(n) For example, m^n = m^n (1) m^^n = m^...^m_()_(n)=m^(m^(·^(·^(·^m))))_()_(n) (2) m^^2 = m^m_()_(2)=m^m=m^m (3) m^^3 = m^m^m_()_(3)=m^(m^m) (4) = m^m^m=m^(m^m) (5) m^^^2 = m^^m_()_(2)=m^^m=m^(m^(·^(·^(·^m))))_()_(m) (6) ...
  • Twitter Meta Tags

    5
    • twitter:card
      summary_large_image
    • twitter:site
      @WolframResearch
    • twitter:title
      Knuth Up-Arrow Notation -- from Wolfram MathWorld
    • twitter:description
      Knuth's up-arrow notation is a notation invented by Knuth (1976) to represent large numbers in which evaluation proceeds from the right (Conway and Guy 1996, p. 60): m^n m·m...m_()_(n) m^^n m^m^...^m_()_(n) m^^^n m^^m^^...^^m_()_(n) For example, m^n = m^n (1) m^^n = m^...^m_()_(n)=m^(m^(·^(·^(·^m))))_()_(n) (2) m^^2 = m^m_()_(2)=m^m=m^m (3) m^^3 = m^m^m_()_(3)=m^(m^m) (4) = m^m^m=m^(m^m) (5) m^^^2 = m^^m_()_(2)=m^^m=m^(m^(·^(·^(·^m))))_()_(m) (6) ...
    • twitter:image:src
      https://mathworld.wolfram.com/images/socialmedia/share/ogimage_KnuthUp-ArrowNotation.png
  • Link Tags

    4
    • canonical
      https://mathworld.wolfram.com/KnuthUp-ArrowNotation.html
    • preload
      //www.wolframcdn.com/fonts/source-sans-pro/1.0/global.css
    • stylesheet
      /css/styles.css
    • stylesheet
      /common/js/c2c/1.0/WolframC2CGui.css.en

Links

42