
mathworld.wolfram.com/LyapunovCharacteristicNumber.html
Preview meta tags from the mathworld.wolfram.com website.
Linked Hostnames
5- 29 links tomathworld.wolfram.com
- 4 links towww.wolfram.com
- 3 links towww.wolframalpha.com
- 1 link towolframalpha.com
- 1 link towww.amazon.com
Thumbnail

Search Engine Appearance
Lyapunov Characteristic Number -- from Wolfram MathWorld
Given a Lyapunov characteristic exponent sigma_i, the corresponding Lyapunov characteristic number lambda_i is defined as lambda_i=e^(sigma_i). (1) For an n-dimensional linear map, X_(n+1)=MX_n. (2) The Lyapunov characteristic numbers lambda_1, ..., lambda_n are the eigenvalues of the map matrix. For an arbitrary map x_(n+1)=f_1(x_n,y_n) (3) y_(n+1)=f_2(x_n,y_n), (4) the Lyapunov numbers are the eigenvalues of the limit ...
Bing
Lyapunov Characteristic Number -- from Wolfram MathWorld
Given a Lyapunov characteristic exponent sigma_i, the corresponding Lyapunov characteristic number lambda_i is defined as lambda_i=e^(sigma_i). (1) For an n-dimensional linear map, X_(n+1)=MX_n. (2) The Lyapunov characteristic numbers lambda_1, ..., lambda_n are the eigenvalues of the map matrix. For an arbitrary map x_(n+1)=f_1(x_n,y_n) (3) y_(n+1)=f_2(x_n,y_n), (4) the Lyapunov numbers are the eigenvalues of the limit ...
DuckDuckGo
Lyapunov Characteristic Number -- from Wolfram MathWorld
Given a Lyapunov characteristic exponent sigma_i, the corresponding Lyapunov characteristic number lambda_i is defined as lambda_i=e^(sigma_i). (1) For an n-dimensional linear map, X_(n+1)=MX_n. (2) The Lyapunov characteristic numbers lambda_1, ..., lambda_n are the eigenvalues of the map matrix. For an arbitrary map x_(n+1)=f_1(x_n,y_n) (3) y_(n+1)=f_2(x_n,y_n), (4) the Lyapunov numbers are the eigenvalues of the limit ...
General Meta Tags
17- titleLyapunov Characteristic Number -- from Wolfram MathWorld
- DC.TitleLyapunov Characteristic Number
- DC.CreatorWeisstein, Eric W.
- DC.DescriptionGiven a Lyapunov characteristic exponent sigma_i, the corresponding Lyapunov characteristic number lambda_i is defined as lambda_i=e^(sigma_i). (1) For an n-dimensional linear map, X_(n+1)=MX_n. (2) The Lyapunov characteristic numbers lambda_1, ..., lambda_n are the eigenvalues of the map matrix. For an arbitrary map x_(n+1)=f_1(x_n,y_n) (3) y_(n+1)=f_2(x_n,y_n), (4) the Lyapunov numbers are the eigenvalues of the limit ...
- descriptionGiven a Lyapunov characteristic exponent sigma_i, the corresponding Lyapunov characteristic number lambda_i is defined as lambda_i=e^(sigma_i). (1) For an n-dimensional linear map, X_(n+1)=MX_n. (2) The Lyapunov characteristic numbers lambda_1, ..., lambda_n are the eigenvalues of the map matrix. For an arbitrary map x_(n+1)=f_1(x_n,y_n) (3) y_(n+1)=f_2(x_n,y_n), (4) the Lyapunov numbers are the eigenvalues of the limit ...
Open Graph Meta Tags
5- og:imagehttps://mathworld.wolfram.com/images/socialmedia/share/ogimage_LyapunovCharacteristicNumber.png
- og:urlhttps://mathworld.wolfram.com/LyapunovCharacteristicNumber.html
- og:typewebsite
- og:titleLyapunov Characteristic Number -- from Wolfram MathWorld
- og:descriptionGiven a Lyapunov characteristic exponent sigma_i, the corresponding Lyapunov characteristic number lambda_i is defined as lambda_i=e^(sigma_i). (1) For an n-dimensional linear map, X_(n+1)=MX_n. (2) The Lyapunov characteristic numbers lambda_1, ..., lambda_n are the eigenvalues of the map matrix. For an arbitrary map x_(n+1)=f_1(x_n,y_n) (3) y_(n+1)=f_2(x_n,y_n), (4) the Lyapunov numbers are the eigenvalues of the limit ...
Twitter Meta Tags
5- twitter:cardsummary_large_image
- twitter:site@WolframResearch
- twitter:titleLyapunov Characteristic Number -- from Wolfram MathWorld
- twitter:descriptionGiven a Lyapunov characteristic exponent sigma_i, the corresponding Lyapunov characteristic number lambda_i is defined as lambda_i=e^(sigma_i). (1) For an n-dimensional linear map, X_(n+1)=MX_n. (2) The Lyapunov characteristic numbers lambda_1, ..., lambda_n are the eigenvalues of the map matrix. For an arbitrary map x_(n+1)=f_1(x_n,y_n) (3) y_(n+1)=f_2(x_n,y_n), (4) the Lyapunov numbers are the eigenvalues of the limit ...
- twitter:image:srchttps://mathworld.wolfram.com/images/socialmedia/share/ogimage_LyapunovCharacteristicNumber.png
Link Tags
4- canonicalhttps://mathworld.wolfram.com/LyapunovCharacteristicNumber.html
- preload//www.wolframcdn.com/fonts/source-sans-pro/1.0/global.css
- stylesheet/css/styles.css
- stylesheet/common/js/c2c/1.0/WolframC2CGui.css.en
Links
38- http://www.wolframalpha.com/input/?i=dynamical+systems
- https://mathworld.wolfram.com
- https://mathworld.wolfram.com/AdiabaticInvariant.html
- https://mathworld.wolfram.com/Area-PreservingMap.html
- https://mathworld.wolfram.com/Chaos.html