mathworld.wolfram.com/LyapunovCharacteristicNumber.html

Preview meta tags from the mathworld.wolfram.com website.

Linked Hostnames

5

Thumbnail

Search Engine Appearance

Google

https://mathworld.wolfram.com/LyapunovCharacteristicNumber.html

Lyapunov Characteristic Number -- from Wolfram MathWorld

Given a Lyapunov characteristic exponent sigma_i, the corresponding Lyapunov characteristic number lambda_i is defined as lambda_i=e^(sigma_i). (1) For an n-dimensional linear map, X_(n+1)=MX_n. (2) The Lyapunov characteristic numbers lambda_1, ..., lambda_n are the eigenvalues of the map matrix. For an arbitrary map x_(n+1)=f_1(x_n,y_n) (3) y_(n+1)=f_2(x_n,y_n), (4) the Lyapunov numbers are the eigenvalues of the limit ...



Bing

Lyapunov Characteristic Number -- from Wolfram MathWorld

https://mathworld.wolfram.com/LyapunovCharacteristicNumber.html

Given a Lyapunov characteristic exponent sigma_i, the corresponding Lyapunov characteristic number lambda_i is defined as lambda_i=e^(sigma_i). (1) For an n-dimensional linear map, X_(n+1)=MX_n. (2) The Lyapunov characteristic numbers lambda_1, ..., lambda_n are the eigenvalues of the map matrix. For an arbitrary map x_(n+1)=f_1(x_n,y_n) (3) y_(n+1)=f_2(x_n,y_n), (4) the Lyapunov numbers are the eigenvalues of the limit ...



DuckDuckGo

https://mathworld.wolfram.com/LyapunovCharacteristicNumber.html

Lyapunov Characteristic Number -- from Wolfram MathWorld

Given a Lyapunov characteristic exponent sigma_i, the corresponding Lyapunov characteristic number lambda_i is defined as lambda_i=e^(sigma_i). (1) For an n-dimensional linear map, X_(n+1)=MX_n. (2) The Lyapunov characteristic numbers lambda_1, ..., lambda_n are the eigenvalues of the map matrix. For an arbitrary map x_(n+1)=f_1(x_n,y_n) (3) y_(n+1)=f_2(x_n,y_n), (4) the Lyapunov numbers are the eigenvalues of the limit ...

  • General Meta Tags

    17
    • title
      Lyapunov Characteristic Number -- from Wolfram MathWorld
    • DC.Title
      Lyapunov Characteristic Number
    • DC.Creator
      Weisstein, Eric W.
    • DC.Description
      Given a Lyapunov characteristic exponent sigma_i, the corresponding Lyapunov characteristic number lambda_i is defined as lambda_i=e^(sigma_i). (1) For an n-dimensional linear map, X_(n+1)=MX_n. (2) The Lyapunov characteristic numbers lambda_1, ..., lambda_n are the eigenvalues of the map matrix. For an arbitrary map x_(n+1)=f_1(x_n,y_n) (3) y_(n+1)=f_2(x_n,y_n), (4) the Lyapunov numbers are the eigenvalues of the limit ...
    • description
      Given a Lyapunov characteristic exponent sigma_i, the corresponding Lyapunov characteristic number lambda_i is defined as lambda_i=e^(sigma_i). (1) For an n-dimensional linear map, X_(n+1)=MX_n. (2) The Lyapunov characteristic numbers lambda_1, ..., lambda_n are the eigenvalues of the map matrix. For an arbitrary map x_(n+1)=f_1(x_n,y_n) (3) y_(n+1)=f_2(x_n,y_n), (4) the Lyapunov numbers are the eigenvalues of the limit ...
  • Open Graph Meta Tags

    5
    • og:image
      https://mathworld.wolfram.com/images/socialmedia/share/ogimage_LyapunovCharacteristicNumber.png
    • og:url
      https://mathworld.wolfram.com/LyapunovCharacteristicNumber.html
    • og:type
      website
    • og:title
      Lyapunov Characteristic Number -- from Wolfram MathWorld
    • og:description
      Given a Lyapunov characteristic exponent sigma_i, the corresponding Lyapunov characteristic number lambda_i is defined as lambda_i=e^(sigma_i). (1) For an n-dimensional linear map, X_(n+1)=MX_n. (2) The Lyapunov characteristic numbers lambda_1, ..., lambda_n are the eigenvalues of the map matrix. For an arbitrary map x_(n+1)=f_1(x_n,y_n) (3) y_(n+1)=f_2(x_n,y_n), (4) the Lyapunov numbers are the eigenvalues of the limit ...
  • Twitter Meta Tags

    5
    • twitter:card
      summary_large_image
    • twitter:site
      @WolframResearch
    • twitter:title
      Lyapunov Characteristic Number -- from Wolfram MathWorld
    • twitter:description
      Given a Lyapunov characteristic exponent sigma_i, the corresponding Lyapunov characteristic number lambda_i is defined as lambda_i=e^(sigma_i). (1) For an n-dimensional linear map, X_(n+1)=MX_n. (2) The Lyapunov characteristic numbers lambda_1, ..., lambda_n are the eigenvalues of the map matrix. For an arbitrary map x_(n+1)=f_1(x_n,y_n) (3) y_(n+1)=f_2(x_n,y_n), (4) the Lyapunov numbers are the eigenvalues of the limit ...
    • twitter:image:src
      https://mathworld.wolfram.com/images/socialmedia/share/ogimage_LyapunovCharacteristicNumber.png
  • Link Tags

    4
    • canonical
      https://mathworld.wolfram.com/LyapunovCharacteristicNumber.html
    • preload
      //www.wolframcdn.com/fonts/source-sans-pro/1.0/global.css
    • stylesheet
      /css/styles.css
    • stylesheet
      /common/js/c2c/1.0/WolframC2CGui.css.en

Links

38